InVivoMAb anti-mouse Thy1.2 (CD90.2)
Product Details
The 30H12 monoclonal antibody reacts with mouse Thy1.2 also known as CD90.2. Thy1.2 is expressed by thymocytes and mature T lymphocytes as well as hematopoietic stem cells, neurons, epithelial cells, and fibroblasts. Thy1.2 is expressed only by certain mouse strains including C57BL/6, BALB/c, CBA, C3H, C58/, SJL, DBA, and NZB/. Thy1.2 is a 25-35 kDa GPI-anchored membrane glycoprotein and a member of the immunoglobulin superfamily. The function of Thy1.2 has not been fully elucidated but is thought to play roles in cognition, axon growth, T lymphocyte function, and apoptosis. The 30H12 monoclonal antibody has been reported to induce Ca2+ flux in thymocytes. This antibody is particularly useful for depletion of T lymphocytes.Specifications
Isotype | Rat IgG2b, κ |
---|---|
Recommended Isotype Control(s) | InVivoMAb rat IgG2b isotype control, anti-keyhole limpet hemocyanin |
Recommended Dilution Buffer | InVivoPure pH 7.0 Dilution Buffer |
Conjugation | This product is unconjugated. Conjugation is available via our Antibody Conjugation Services. |
Immunogen | Mouse thymus or spleen |
Reported Applications |
in vivo ILC depletion in vivo T cell depletion Western blot |
Formulation |
PBS, pH 7.0 Contains no stabilizers or preservatives |
Endotoxin |
<2EU/mg (<0.002EU/μg) Determined by LAL gel clotting assay |
Purity |
>95% Determined by SDS-PAGE |
Sterility | 0.2 µm filtration |
Production | Purified from cell culture supernatant in an animal-free facility |
Purification | Protein G |
RRID | AB_1107682 |
Molecular Weight | 150 kDa |
Storage | The antibody solution should be stored at the stock concentration at 4°C. Do not freeze. |
Additional Formats
Recommended Products
-
Recommended Isotype Control(s)
InVivoMAb rat IgG2b isotype control, anti-keyhole limpet hemocyanin
-
Recommended Dilution Buffer
InVivoPure pH 7.0 Dilution Buffer
in vivo ILC depletion
Seo, G. Y., et al. (2018). "LIGHT-HVEM Signaling in Innate Lymphoid Cell Subsets Protects Against Enteric Bacterial Infection" Cell Host Microbe 24(2): 249-260 e244. PubMed
Innate lymphoid cells (ILCs) are important regulators of early infection at mucosal barriers. ILCs are divided into three groups based on expression profiles, and are activated by cytokines and neuropeptides. Yet, it remains unknown if ILCs integrate other signals in providing protection. We show that signaling through herpes virus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor superfamily, in ILC3 is important for host defense against oral infection with the bacterial pathogen Yersinia enterocolitica. HVEM stimulates protective interferon-gamma (IFN-gamma) secretion from ILCs, and mice with HVEM-deficient ILC3 exhibit reduced IFN-gamma production, higher bacterial burdens and increased mortality. In addition, IFN-gamma production is critical as adoptive transfer of wild-type but not IFN-gamma-deficient ILC3 can restore protection to mice lacking ILCs. We identify the TNF superfamily member, LIGHT, as the ligand inducing HVEM signals in ILCs. Thus HVEM signaling mediated by LIGHT plays a critical role in regulating ILC3-derived IFN-gamma production for protection following infection.
in vivo T cell depletion
Brasseit, J., et al. (2015). "CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis" Mucosal Immunol. doi : 10.1038/mi.2015.93. PubMed
Current therapies to treat inflammatory bowel diseases have limited efficacy, significant side effects, and often wane over time. Little is known about the cellular and molecular mechanisms operative in the process of mucosal healing from colitis. To study such events, we developed a new model of reversible colitis in which adoptive transfer of CD4+CD45RBhi T cells into Helicobacter typhlonius-colonized lymphopenic mice resulted in a rapid onset of colonic inflammation that was reversible through depletion of colitogenic T cells. Remission was associated with an improved clinical and histopathological score, reduced immune cell infiltration to the intestinal mucosa, altered intestinal gene expression profiles, regeneration of the colonic mucus layer, and the restoration of epithelial barrier integrity. Notably, colitogenic T cells were not only critical for induction of colitis but also for maintenance of disease. Depletion of colitogenic T cells resulted in a rapid drop in tumor necrosis factor alpha (TNFalpha) levels associated with reduced infiltration of inflammatory immune cells to sites of inflammation. Although neutralization of TNFalpha prevented the onset of colitis, anti-TNFalpha treatment of mice with established disease failed to resolve colonic inflammation. Collectively, this new model of reversible colitis provides an important research tool to study the dynamics of mucosal healing in chronic intestinal remitting-relapsing disorders.
in vivo T cell depletion
Wilson, K. A., et al. (2015). "Depletion of B220NK1.1 cells enhances the rejection of established melanoma by tumor-specific CD4 T cells" Oncoimmunology 4(8): e1019196. PubMed
Five-year survival rates for patients diagnosed with metastatic melanoma are less than 5%. Adoptive cell transfer (ACT) has achieved an objective response of 50% by Response Evaluation Criteria in Solid Tumors (RECIST) in this patient population. For ACT to be maximally effective, the host must first be lymphodepleted. It is hypothesized that lymphodepletion may remove regulatory elements and cytokine sinks, or increase the activation and availability of antigen presenting cells (APCs). We use an in vivo model to study the ACT of tumor-associated antigen (TAA)-specific CD4+ T cells (TRP-1 cells). We have discovered that depletion of NK1.1+ cells enhances the rejection of established melanoma tumors by adoptively transferred TRP-1 CD4+ T cells. NK1.1+ cell depletion increases the number of CD4+ T cells, the serum concentration of pro-inflammatory cytokines, autoimmune vitiligo, host survival and prevented recurrence after ACT. Because multiple cells express NK1.1, we targeted different NK1.1+ cell populations using antibodies specific for NK cells, pre-mNK cells, and innate lymphoid cells (ILCs). Our data suggests that NK1.1+B220+ pre-mNK cells (also known as interferon-producing killer dendritic cells; IKDCs) are an important inhibitor of the CD4+ T cell response to melanoma. Understanding this mechanism may help design new immunotherapies to modulate the activity of pre-mNKs in the face of an antitumor immune response and inhibit their suppression of adoptively transferred T cells.
in vivo T cell depletion
Finkin, S., et al. (2015). "Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma" Nat Immunol. doi : 10.1038/ni.3290. PubMed
Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-kappaB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.
in vivo ILC depletion
Yang, Q., et al. (2015). "Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice" J Allergy Clin Immunol . PubMed
BACKGROUND: Asthmatic patients are highly susceptible to air pollution and in particular to the effects of ozone (O3) inhalation, but the underlying mechanisms remain unclear. OBJECTIVE: Using mouse models of O3-induced airway inflammation and airway hyperresponsiveness (AHR), we sought to investigate the role of the recently discovered group 2 innate lymphoid cells (ILC2s). METHODS: C57BL/6 and BALB/c mice were exposed to Aspergillus fumigatus, O3, or both (3 ppm for 2 hours). ILC2s were isolated by means of fluorescence-activated cell sorting and studied for Il5 and Il13 mRNA expression. ILC2s were depleted with anti-Thy1.2 mAb and replaced by means of intratracheal transfer of ex vivo expanded Thy1.1 ILC2s. Cytokine levels (ELISA and quantitative PCR), inflammatory cell profile, and AHR (flexiVent) were assessed in the mice. RESULTS: In addition to neutrophil influx, O3 inhalation elicited the appearance of eosinophils and IL-5 in the airways of BALB/c but not C57BL/6 mice. Although O3-induced expression of IL-33, a known activator of ILC2s, in the lung was similar between these strains, isolated pulmonary ILC2s from O3-exposed BALB/c mice had significantly greater Il5 and Il13 mRNA expression than C57BL/6 mice. This suggested that an altered ILC2 function in BALB/c mice might mediate the increased O3 responsiveness. Indeed, anti-Thy1.2 treatment abolished but ILC2s added back dramatically enhanced O3-induced AHR. CONCLUSIONS: O3-induced activation of pulmonary ILC2s was necessary and sufficient to mediate asthma-like changes in BALB/c mice. This previously unrecognized role of ILC2s might help explain the heightened susceptibility of human asthmatic airways to O3 exposure.
in vivo ILC depletion
Bouchery, T., et al. (2015). "ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms" Nat Commun 6: 6970. PubMed
Defining the immune mechanisms underlying protective immunity to helminth infection remains an important challenge. Here we report that lung CD4(+) T cells and Group 2 innate lymphoid cells (ILC2s) work in concert to block Nippostrongylus brasiliensis (Nb) development in the parenchyma within 48 h in mice. Immune-damaged larvae have a striking morphological defect that is dependent on the expansion of IL-13-producing ILC2 and CD4(+) T cells, and the activation of M2 macrophages. This T-cell requirement can be bypassed by administration of IL-2 or IL-33, resulting in expansion of IL-13-producing ILC2s and larval killing. Depletion of ILC2s inhibits larval killing in IL-2-treated mice. Our results broaden understanding of ILC2’s role in immunity to helminths by demonstrating that they not only act as alarmin sensors, but can also be sustained by CD4(+) T cells, ensuring both the prompt activation and the maintenance of IL-13-dependent M2 macrophage immunity in the lung.
in vivo ILC depletion
Ermann, J., et al. (2014). "Nod/Ripk2 signaling in dendritic cells activates IL-17A-secreting innate lymphoid cells and drives colitis in T-bet-/-.Rag2-/- (TRUC) mice" Proc Natl Acad Sci U S A 111(25): E2559-2566. PubMed
T-bet(-/-).Rag2(-/-) (TRUC) mice spontaneously develop microbiota-driven, TNF-mediated large bowel inflammation that resembles human ulcerative colitis. We show here that IL-23 and IL-1-dependent secretion of IL-17A by innate lymphoid cells (ILCs; defined as CD45(+)lin(-)Thy1(hi)NKp46(-)) is a second critical pathway in this model. Using an in vitro coculture system of bone marrow-derived dendritic cells (DCs) and freshly isolated FACS-purified ILCs, we demonstrate that IL-23 and IL-1 secreted by DCs in response to microbial stimulation work together to induce IL-17A production by ILCs. TNF is not required for IL-17A secretion by ILCs in vitro but synergizes with IL-17A to induce the expression of neutrophil-attracting chemokines. Upstream, activation of the IL-23/IL-17A axis is regulated by nucleotide-binding oligomerization domain containing (Nod)/receptor-interacting serine-threonine kinase 2 (Ripk2) signals in DCs. Genetic ablation of the Nod/Ripk2 signaling pathway protects TRUC mice from developing colitis without affecting the colitogenicity of the intestinal microbiota. Our data provide insight into the complex network of interactions between IL-17A-secreting ILCs and other components of the innate immune system in the development of colitis.
in vivo ILC depletion
Deshmukh, H. S., et al. (2014). "The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice" Nat Med 20(5): 524-530. PubMed
Neonatal colonization by microbes, which begins immediately after birth, is influenced by gestational age and the mother’s microbiota and is modified by exposure to antibiotics. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of late-onset sepsis (LOS), a disorder controlled by neutrophils. A role for the microbiota in regulating neutrophil development and susceptibility to sepsis in the neonate remains unclear. We exposed pregnant mouse dams to antibiotics in drinking water to limit transfer of maternal microbes to the neonates. Antibiotic exposure of dams decreased the total number and composition of microbes in the intestine of the neonates. This was associated with decreased numbers of circulating and bone marrow neutrophils and granulocyte/macrophage-restricted progenitor cells in the bone marrow of antibiotic-treated and germ-free neonates. Antibiotic exposure of dams reduced the number of interleukin-17 (IL-17)-producing cells in the intestine and production of granulocyte colony-stimulating factor (G-CSF). Granulocytopenia was associated with impaired host defense and increased susceptibility to Escherichia coli K1 and Klebsiella pneumoniae sepsis in antibiotic-treated neonates, which could be partially reversed by administration of G-CSF. Transfer of a normal microbiota into antibiotic-treated neonates induced IL-17 production by group 3 innate lymphoid cells (ILCs) in the intestine, increasing plasma G-CSF levels and neutrophil numbers in a Toll-like receptor 4 (TLR4)- and myeloid differentiation factor 88 (MyD88)-dependent manner and restored IL-17-dependent resistance to sepsis. Specific depletion of ILCs prevented IL-17- and G-CSF-dependent granulocytosis and resistance to sepsis. These data support a role for the intestinal microbiota in regulation of granulocytosis, neutrophil homeostasis and host resistance to sepsis in neonates.
in vivo ILC depletion
Gladiator, A., et al. (2013). "Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection" J Immunol 190(2): 521-525. PubMed
IL-17-mediated immunity has emerged as a crucial host defense mechanism against fungal infections. Although Th cells are generally thought to act as the major source of IL-17 in response to Candida albicans, we show that fungal control is mediated by IL-17-secreting innate lymphoid cells (ILCs) and not by Th17 cells. By using a mouse model of oropharyngeal candidiasis we found that IL-17A and IL-17F, which are both crucial for pathogen clearance, are produced promptly upon infection in an IL-23-dependent manner, and that ILCs in the oral mucosa are the main source for these cytokines. Ab-mediated depletion of ILCs in RAG1-deficient mice or ILC deficiency in retinoic acid-related orphan receptor c(-/-) mice resulted in a complete failure to control the infection. Taken together, our data uncover the cellular basis for the IL-23/IL-17 axis, which acts right at the onset of infection when it is most needed for fungal control and host protection.
in vivo ILC depletion
McHedlidze, T., et al. (2013). "Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis" Immunity 39(2): 357-371. PubMed
Liver fibrosis is a consequence of chronic liver diseases and thus a major cause of mortality and morbidity. Clinical evidence and animal studies suggest that local tissue homeostasis is disturbed due to immunological responses to chronic hepatocellular stress. Poorly defined stress-associated inflammatory networks are thought to mediate gradual accumulation of extracellular-matrix components, ultimately leading to fibrosis and liver failure. Here we have reported that hepatic expression of interleukin-33 (IL-33) was both required and sufficient for severe hepatic fibrosis in vivo. We have demonstrated that IL-33’s profibrotic effects related to activation and expansion of liver resident innate lymphoid cells (ILC2). We identified ILC2-derived IL-13, acting through type-II IL-4 receptor-dependent signaling via the transcription factor STAT6 and hepatic stellate-cell activation, as a critical downstream cytokine of IL-33-dependent pathologic tissue remodeling and fibrosis. Our data reveal key immunological networks implicated in hepatic fibrosis and support the concept of modulation of IL-33 bioactivity for therapeutic purposes.
in vivo T cell depletion
Engelmann, S., et al. (2013). "T cell-independent modulation of experimental autoimmune encephalomyelitis in ADAP-deficient mice" J Immunol 191(10): 4950-4959. PubMed
The adhesion- and degranulation-promoting adaptor protein (ADAP), expressed in T cells, myeloid cells, and platelets, is known to regulate receptor-mediated inside-out signaling leading to integrin activation and adhesion. In this study, we demonstrate that, upon induction of active experimental autoimmune encephalomyelitis (EAE) by immunization with the myelin oligodendrocyte glycoprotein35-55 peptide, ADAP-deficient mice developed a significantly milder clinical course of EAE and showed markedly less inflammatory infiltrates in the CNS than wild-type mice. Moreover, ADAP-deficient recipients failed to induce EAE after adoptive transfer of myelin oligodendrocyte glycoprotein-specific TCR-transgenic T cells (2D2 T cells). In addition, ex vivo fully activated 2D2 T cells induced significantly less severe EAE in ADAP-deficient recipients. The ameliorated disease in the absence of ADAP was not due to expansion or deletion of a particular T cell subset but rather because of a strong reduction of all inflammatory leukocyte populations invading the CNS. Monitoring the adoptively transferred 2D2 T cells over time demonstrated that they accumulated within the lymph nodes of ADAP-deficient hosts. Importantly, transfer of complete wild-type bone marrow or even bone marrow of 2D2 TCR-transgenic mice was unable to reconstitute EAE in the ADAP-deficient animals, indicating that the milder EAE was dependent on (a) radio-resistant nonhematopoietic cell population(s). Two-photon microscopy of lymph node explants revealed that adoptively transferred lymphocytes accumulated at lymphatic vessels in the lymph nodes of ADAP-deficient mice. Thus, our data identify a T cell-independent mechanism of EAE modulation in ADAP-deficient mice.
in vivo T cell depletion
Freeman, M. L., et al. (2012). "gamma-Herpesvirus reactivation differentially stimulates epitope-specific CD8 T cell responses" J Immunol 188(8): 3812-3819. PubMed
The gamma-herpesviruses are characterized by their ability to establish lifelong latency. Subsequent immune suppression leads to viral reactivation from latency and the onset of a variety of pathologies, including lymphoproliferative disease and cancers. CD8 T cells play a key role in preventing reactivation of latent virus. Therefore, to develop effective therapeutic immune strategies, it is essential to understand the maintenance of CD8 T cell responses during latency. Because the gamma-herpesviruses are highly species-specific and mice cannot be infected with the human pathogens, EBV or Kaposi’s sarcoma-associated herpesvirus, we have used a natural rodent gamma-herpesvirus experimental infection model, gamma-herpesvirus-68. In this report, we show that during long-term latent infection, naive CD8 T cells are recruited into the ongoing immune response in an epitope-specific manner. When virus reactivation is induced in vivo, the recruitment of CD8 T cells for some, but not all, epitopes is enhanced. The variation in recruitment is not due to differences in epitope presentation. We also show that CD8 T cells that are newly stimulated during reactivation are functionally impaired compared with acutely stimulated cells in terms of cytokine production. Thus, our results demonstrate unexpected complexity in the response of CD8 T cells specific for different viral epitopes that were stimulated during acute infection, quiescent latency, and reactivation.
in vivo ILC depletion
Sonnenberg, G. F., et al. (2011). "CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut" Immunity 34(1): 122-134. PubMed
Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine.
in vivo ILC depletion
Monticelli, L. A., et al. (2011). "Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus" Nat Immunol 12(11): 1045-1054. PubMed
Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.
in vivo T cell depletion
Gillard, G. O., et al. (2011). "Thy1+ NK [corrected] cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes" PLoS Pathog 7(8): e1002141. PubMed
While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+) subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+) NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.
- Cardiovascular biology,
Activation of ILC2s through constitutive IFNγ signaling reduction leads to spontaneous pulmonary fibrosis.
In Nature Communications on 14 December 2023 by Otaki, N., Motomura, Y., et al.
PubMed
Pulmonary fibrosis (PF), a condition characterized by inflammation and collagen deposition in the alveolar interstitium, causes dyspnea and fatal outcomes. Although the bleomycin-induced PF mouse model has improved our understanding of exogenous factor-induced fibrosis, the mechanism governing endogenous factor-induced fibrosis remains unknown. Here, we find that Ifngr1-/-Rag2-/- mice, which lack the critical suppression factor for group 2 innate lymphoid cells (ILC2), develop PF spontaneously. The onset phase of fibrosis includes ILC2 subpopulations with a high Il1rl1 (IL-33 receptor) expression, and fibrosis does not develop in ILC-deficient or IL-33-deficient mice. Although ILC2s are normally localized near bronchioles and blood vessels, ILC2s are increased in fibrotic areas along with IL-33 positive fibroblasts during fibrosis. Co-culture analysis shows that activated-ILC2s directly induce collagen production from fibroblasts. Furthermore, increased IL1RL1 and decreased IFNGR1 expressions are confirmed in ILC2s from individuals with idiopathic PF, highlighting the applicability of Ifngr1-/-Rag2-/- mice as a mouse model for fibrosis research. © 2023. The Author(s).
- Mus musculus (House mouse),
- Immunology and Microbiology
Sex-Biased T-cell Exhaustion Drives Differential Immune Responses in Glioblastoma.
In Cancer Discovery on 6 September 2023 by Lee, J., Nicosia, M., et al.
PubMed
Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunologic sex differences are not fully understood. Here, we demonstrate that T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased frequency and increased exhaustion of CD8+ T cells in the tumor. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD-1 treatment. Moreover, increased T-cell exhaustion was observed in male GBM patients. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, partially mediated by the X chromosome inactivation escape gene Kdm6a. These findings demonstrate that sex-biased predetermined behavior of T cells is critical for inducing sex differences in GBM progression and immunotherapy response. Immunotherapies in patients with GBM have been unsuccessful due to a variety of factors, including the highly immunosuppressive tumor microenvironment in GBM. This study demonstrates that sex-biased T-cell behaviors are predominantly intrinsically regulated, further suggesting sex-specific approaches can be leveraged to potentially improve the therapeutic efficacy of immunotherapy in GBM. See related commentary by Alspach, p. 1966. This article is featured in Selected Articles from This Issue, p. 1949. ©2023 The Authors; Published by the American Association for Cancer Research.
- Mus musculus (House mouse)
ILC3s restrict the dissemination of intestinal bacteria to safeguard liver regeneration after surgery.
In Cell Reports on 28 March 2023 by Jakob, M. O., Spari, D., et al.
PubMed
It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets. Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
- Immunology and Microbiology,
- Mus musculus (House mouse)
CTLA-4 antibody-drug conjugate reveals autologous destruction of B-lymphocytes associated with regulatory T cell impairment
Preprint on BioRxiv : the Preprint Server for Biology on 2 March 2023 by Muthana, M. M., Du, X., et al.
PubMed
Germline CTLA-4 deficiency causes severe autoimmune diseases characterized by dysregulation of Foxp3 + Tregs, hyper-activation of effector memory T cells, and variable forms autoimmune cytopenia including gradual loss of B cells. Cancer patients with severe immune-related adverse events (irAE) after receiving anti-CTLA-4/PD-1 combination immunotherapy also have markedly reduced peripheral B cells. The immunological basis for B cell loss remains unexplained. Here we probe the decline of B cells in human CTLA-4 knock-in mice by using anti-human CTLA-4 antibody Ipilimumab conjugated to a drug payload emtansine (Anti-CTLA-4 ADC). The anti-CTLA-4 ADC-treated mice have T cell hyper-proliferation and their differentiation into effector cells which results in B cell depletion. B cell depletion is mediated by both CD4 and CD8 T cells and at least partially rescued by anti-TNF-alpha antibody. These data revealed an unexpected antagonism between T and B cells and the importance of regulatory T cells in preserving B cells.
- Mus musculus (House mouse),
- Biochemistry and Molecular biology,
- Genetics
Long noncoding RNA uc007nnj.1 mediates neuronal death induced by retinal ischemia/reperfusion in mice via the miR-155-5p/Tle4 axis.
In Molecular Medicine on 18 January 2023 by Feng, Y., Lu, J., et al.
PubMed
Retinal ganglion cells (RGCs) apoptosis is a vital manifestation of retinal ischemia/reperfusion (I/R) injury, yet the underlying mechanisms are not well understood. The contribution of long noncoding RNAs (lncRNAs) to this cellular process is currently being explored. Based on a lncRNA chip assay, we aimed to investigate the role of lncRNA uc007nnj.1 in the pathological process of ischemia-induced RGCs apoptosis. Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 h to construct an ischemic model in RGCs, and elevation of intraocular pressure to 120 mm Hg for 1 h was used to construct a mouse model of retinal I/R injury. In this study, lncRNA uc007nnj.1 was highly upregulated in response to I/R injury in RGCs and mouse retinas. In addition, lncRNA uc007nnj.1 knockdown reduced retinal neuronal cell apoptosis in vitro and in vivo and significantly improved retinal function. Mechanistically, the results demonstrated that lncRNA uc007nnj.1 acts as ceRNA competitively binding miR-155-5p, thereby enhancing the expression levels of Tle4, thus aggravating ischemia-related apoptosis in RGCs. Finally, our study identifies the lncRNA uc007nnj.1/miR-155-5p/Tle4 axis as a potential target for the prevention of I/R-induced retinal neuronal death. © 2023. The Author(s).
- Immunology and Microbiology
Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition.
In Nature Communications on 19 August 2022 by Xu, L., Guo, J., et al.
PubMed
Incomplete repair after acute kidney injury can lead to development of chronic kidney disease. To define the mechanism of this response, we compared mice subjected to identical unilateral ischemia-reperfusion kidney injury with either contralateral nephrectomy (where tubule repair predominates) or contralateral kidney intact (where tubule atrophy predominates). By day 14, the kidneys undergoing atrophy had more macrophages with higher expression of chemokines, correlating with a second wave of proinflammatory neutrophil and T cell recruitment accompanied by increased expression of tubular injury genes and a decreased proportion of differentiated tubules. Depletion of neutrophils and T cells after day 5 reduced tubular cell loss and associated kidney atrophy. In kidney biopsies from patients with acute kidney injury, T cell and neutrophil numbers negatively correlated with recovery of estimated glomerular filtration rate. Together, our findings demonstrate that macrophage persistence after injury promotes a T cell- and neutrophil-mediated proinflammatory milieu and progressive tubule damage. © 2022. The Author(s).
- Immunology and Microbiology
Sex-specific T cell exhaustion drives differential immune responses in glioblastoma
Preprint on BioRxiv : the Preprint Server for Biology on 18 August 2022 by Lee, J., Nicosia, M., et al.
PubMed
Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunological sex differences are not fully understood. Using GBM models, we demonstrate that T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased T cell infiltration and increased T cell exhaustion. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD1 treatment. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, which was further corroborated by in vitro exhaustion assays. Moreover, increased T cell exhaustion was observed in male GBM patients. These findings demonstrate sex-specific pre-determined behavior of T cells is critical in inducing sex differences in GBM progression and immunotherapy response. h4>Statement of significance/h4> Immunotherapies in GBM patients have been unsuccessful due to a variety of factors including the highly immunosuppressive tumor microenvironment in GBM. This study demonstrates that sex-specific T cell behaviors are predominantly intrinsically regulated, further suggesting sex-specific approaches can be leveraged to potentially improve therapeutic efficacy of immunotherapy in GBM.
- Immunology and Microbiology
Group 3 innate lymphocytes make a distinct contribution to type 17 immunity in bladder defence.
In IScience on 15 July 2022 by Riding, A. M., Loudon, K. W., et al.
PubMed
Bladder infection affects a hundred million people annually, but our understanding of bladder immunity is incomplete. We found type 17 immune response genes among the most up-regulated networks in mouse bladder following uropathogenic Escherichia coli (UPEC) challenge. Intravital imaging revealed submucosal Rorc+ cells responsive to UPEC challenge, and we found increased Il17 and IL22 transcripts in wild-type and Rag2 -/- mice, implicating group 3 innate lymphoid cells (ILC3s) as a source of these cytokines. NCR-positive and negative ILC3 subsets were identified in murine and human bladders, with local proliferation increasing IL17-producing ILC3s post infection. ILC3s made a more limited contribution to bladder IL22, with prominent early induction of IL22 evident in Th17 cells. Single-cell RNA sequencing revealed bladder NCR-negative ILC3s as the source of IL17 and identified putative ILC3-myeloid cell interactions, including via lymphotoxin-β-LTBR. Altogether, our data provide important insights into the orchestration and execution of type 17 immunity in bladder defense. © 2022 The Authors.
- Immunology and Microbiology
Immune-mediated Tubule Atrophy Promotes Acute Kidney Injury to Chronic Kidney Disease Transition
Preprint on BioRxiv : the Preprint Server for Biology on 1 June 2022 by Xu, L., Guo, J., et al.
PubMed
h4>ABSTRACT/h4> Incomplete repair after acute kidney injury (AKI) is associated with progressive loss of tubular cell function and development of chronic kidney disease (CKD). Here, we compared mice subjected to either unilateral ischemia-reperfusion kidney injury with contralateral nephrectomy (IRI/CL-NX, in which tubule repair predominates) or unilateral IRI with contralateral kidney intact (U-IRI, in which fibrosis and atrophy predominates) to investigate the mechanism(s) underlying transition to CKD following AKI. The initial injury and early recruitment and activation of macrophages, dendritic cells (DCs), neutrophils, and T cells were similar through day 7 but markedly diverged afterwards between the two models. By day 14, kidneys subjected to U-IRI had greater numbers of macrophages with higher expression of Ccl2 , Ccl7 , Ccl8 , Ccl12 , and Cxcl16 . These chemokines correlated with a second wave of Ccr1 -positive neutrophils and Cxcr6 -positive T cells, resulting in a proinflammatory milieu, accompanied by increased expression of tubular cell injury, oxidative stress and major histocompatibility complex genes. This second wave of immune dysfunction led to a distinct profile of tubule injury with morphologic kidney atrophy and a decreased proportion of differentiated tubule cells. Combined depletion of neutrophils and T cells beginning on day 5 after U-IRI was found to reduce tubular cell loss and the associated kidney atrophy. In kidney biopsy samples from patients with AKI, the number of interstitial T cells and neutrophils negatively correlated with 6-month recovery of GFR. Together, our findings demonstrate that macrophage persistence after AKI promotes a T cell- and neutrophil-mediated proinflammatory milieu that leads to progressive tubule damage.
- Genetics
Long noncoding RNA uc007nnj.1 mediates neuronal death induced by retinal ischemia/reperfusion in mice via the miR-155-5p/Tle4 axis
Preprint on Research Square on 18 May 2022 by Feng, Y., Lu, J., et al.
PubMed
Retinal ganglion cells(RGCs) apoptosis is a vital manifestation of retinal ischemia/reperfusion(I/R) injury, yet the underlying mechanisms are not well understood. The contribution of long noncoding RNAs(lncRNAs) to this cellular process is currently being explored. Based on a lncRNA chip assay, we aimed to investigate the role of lncRNA uc007nnj.1 in the pathological process of ischemia-induced RGCs apoptosis. Hank’s balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 hours to construct an ischemic model in RGCs, and elevation of intraocular pressure to 120 mm Hg for 1 hour was used to construct a mouse model of retinal I/R injury. In this study, lncRNA uc007nnj.1 was highly upregulated in response to I/R injury in RGCs and mouse retinas. In addition, lncRNA uc007nnj.1 knockdown reduced retinal neuronal cell apoptosis in vitro and in vivo and significantly improved retinal function. Mechanistically, the results demonstrated that lncRNA uc007nnj.1 acts as ceRNA competitively binding miR-155-5p, thereby enhancing the expression levels of Tle4, thus aggravating ischemia-related apoptosis in RGCs. Finally, our study identifies the lncRNA uc007nnj.1/miR-155-5p/Tle4 axis as a potential target for the prevention of I/R-induced retinal neuronal death.
- FC/FACS,
- Mus musculus (House mouse),
- Cancer Research,
- Immunology and Microbiology
Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer.
In Journal for Immunotherapy of Cancer on 1 March 2022 by van Vloten, J. P., Matuszewska, K., et al.
PubMed
Novel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe Parapoxvirus ovis (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer. The immunotherapeutic potential of OrfV was tested in the ID8 orthotopic mouse model of end-stage epithelial ovarian carcinoma. Immune cell profiling, impact on secondary lesion development and survival were evaluated in OrfV-treated mice as well as in Batf3 knockout, mice depleted of specific immune cell subsets and in mice where the primary tumor was removed. Finally, we interrogated gene expression datasets from primary human ovarian tumors from the International Cancer Genome Consortium database to determine whether the interplay we observed between natural killer (NK) cells, classical type 1 dendritic cells (cDC1s) and T cells exists and influences outcomes in human ovarian cancer. OrfV was an effective monotherapy in a murine model of advanced-stage epithelial ovarian cancer. OrfV intervention relied on NK cells, which when depleted abrogated antitumor CD8+ T-cell responses. OrfV therapy was shown to require cDC1s in experiments with BATF3 knockout mice, which do not have mature cDC1s. Furthermore, cDC1s governed antitumor NK and T-cell responses to mediate antitumor efficacy following OrfV. Primary tumor removal, a common treatment option in human patients, was effectively combined with OrfV for optimal therapeutic outcome. Analysis of human RNA sequencing datasets revealed that cDC1s correlate with NK cells in human ovarian cancer and that intratumoral NK cells correlate positively with survival. The data herein support the translational potential of OrfV as an NK stimulating immunotherapeutic for the treatment of advanced-stage ovarian cancer. © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
- In Vivo,
- Mus musculus (House mouse),
- Immunology and Microbiology
Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections.
In Immunity on 9 November 2021 by Russler-Germain, E. V., Jung, J., et al.
PubMed
Cryptosporidium can cause severe diarrhea and morbidity, but many infections are asymptomatic. Here, we studied the immune response to a commensal strain of Cryptosporidium tyzzeri (Ct-STL) serendipitously discovered when conventional type 1 dendritic cell (cDC1)-deficient mice developed cryptosporidiosis. Ct-STL was vertically transmitted without negative health effects in wild-type mice. Yet, Ct-STL provoked profound changes in the intestinal immune system, including induction of an IFN-γ-producing Th1 response. TCR sequencing coupled with in vitro and in vivo analysis of common Th1 TCRs revealed that Ct-STL elicited a dominant antigen-specific Th1 response. In contrast, deficiency in cDC1s skewed the Ct-STL CD4 T cell response toward Th17 and regulatory T cells. Although Ct-STL predominantly colonized the small intestine, colon Th1 responses were enhanced and associated with protection against Citrobacter rodentium infection and exacerbation of dextran sodium sulfate and anti-IL10R-triggered colitis. Thus, Ct-STL represents a commensal pathobiont that elicits Th1-mediated intestinal homeostasis that may reflect asymptomatic human Cryptosporidium infection. Copyright © 2021 Elsevier Inc. All rights reserved.
- Immunology and Microbiology,
- Neuroscience
Arthritis flares mediated by tissue-resident memory T cells in the joint.
In Cell Reports on 26 October 2021 by Chang, M. H., Levescot, A., et al.
PubMed
Rheumatoid arthritis is a systemic autoimmune disease, but disease flares typically affect only a subset of joints, distributed in a distinctive pattern for each patient. Pursuing this intriguing pattern, we show that arthritis recurrence is mediated by long-lived synovial resident memory T cells (TRM). In three murine models, CD8+ cells bearing TRM markers remain in previously inflamed joints during remission. These cells are bona fide TRM, exhibiting a failure to migrate between joints, preferential uptake of fatty acids, and long-term residency. Disease flares result from TRM activation by antigen, leading to CCL5-mediated recruitment of circulating effector cells. Correspondingly, TRM depletion ameliorates recurrence in a site-specific manner. Human rheumatoid arthritis joint tissues contain a comparable CD8+-predominant TRM population, which is most evident in late-stage leukocyte-poor synovium, exhibiting limited T cell receptor diversity and a pro-inflammatory transcriptomic signature. Together, these findings establish synovial TRM as a targetable mediator of disease chronicity in autoimmune arthritis. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
- Immunology and Microbiology
Innate Type 2 Response to Aspergillus fumigatus in a Murine Model of Atopic Dermatitis-like Skin Inflammation.
In Journal of Korean Medical Science on 18 October 2021 by Park, A., Lee, E., et al.
PubMed
Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease mediated by T helper type 2 (Th2) cells in acute phase. Group 2 innate lymphoid cells (ILCs) play a role in the initiation of the Th2 response. Although mold exposure is associated with the development of AD, studies on the underlying mechanisms are lacking. This study investigated whether group 2 ILCs are involved in inflammation in AD-like skin induced by Aspergillus fumigatus (Af). We investigated changes of group 2 ILCs population in Af-induced AD-like skin lesions. To induce AD-like skin lesions, Af extracts were applied to the dorsal skin of BALB/c and Rag1-/- mice five times per week, with repeat exposures at 2-week intervals. The clinical parameters were higher in the Af-treated group than in the control group. Histologic findings revealed epiderrmal and dermal thickening as well as eosinophil and mast cell infiltration into the skin of Af-treated mice. Populations of group 2 ILCs in the skin were also significantly higher in the Af-treated group. In addition, interleukin-33 mRNA expression was significantly higher in the skin lesions of the Af-treated mice. In the Rag1-/- mice lacking mature lymphocytes, AD-like skin lesions were still induced by Af and ILCs depletion using an anti-CD90.2 mAb lowered the Af-induced inflammatory response. Group 2 ILCs may play a role in a murine model of Af-induced AD-like skin lesions. © 2021 The Korean Academy of Medical Sciences.
- In Vivo,
- Mus musculus (House mouse),
- Immunology and Microbiology
Microbiota instruct IL-17A-producing innate lymphoid cells to promote skin inflammation in cutaneous leishmaniasis.
In PLoS Pathogens on 1 October 2021 by Singh, T. P., Carvalho, A. M., et al.
PubMed
Innate lymphoid cells (ILCs) comprise a heterogeneous population of immune cells that maintain barrier function and can initiate a protective or pathological immune response upon infection. Here we show the involvement of IL-17A-producing ILCs in microbiota-driven immunopathology in cutaneous leishmaniasis. IL-17A-producing ILCs were RORγt+ and were enriched in Leishmania major infected skin, and topical colonization with Staphylococcus epidermidis before L. major infection exacerbated the skin inflammatory responses and IL-17A-producing RORγt+ ILC accumulation without impacting type 1 immune responses. IL-17A responses in ILCs were directed by Batf3 dependent CD103+ dendritic cells and IL-23. Moreover, experiments using Rag1-/- mice established that IL-17A+ ILCs were sufficient in driving the inflammatory responses as depletion of ILCs or neutralization of IL-17A diminished the microbiota mediated immunopathology. Taken together, this study indicates that the skin microbiota promotes RORγt+ IL-17A-producing ILCs, which augment the skin inflammation in cutaneous leishmaniasis.
- Biochemistry and Molecular biology,
- Cell Biology
Mitochondrial transcription factor A in RORγt+ lymphocytes regulate small intestine homeostasis and metabolism.
In Nature Communications on 22 July 2021 by Fu, Z., Dean, J. W., et al.
PubMed
RORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling. © 2021. The Author(s).
- Genetics,
- Neuroscience
The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma.
In The Journal of Experimental Medicine on 5 July 2021 by Verma, M., Michalec, L., et al.
PubMed
Repetitive exposure of Rag1-/- mice to the Alternaria allergen extract generated a form of memory that elicited an asthma-like response upon a subthreshold recall challenge 3-15 wk later. This memory was associated with lung ICOS+ST2+ ILC2s. Genetic, pharmacologic, and antibody-mediated inhibition and adoptive transfer established an essential role for ILC2s in memory-driven asthma. ATAC-seq demonstrated a distinct epigenetic landscape of memory ILC2s and identified Bach2 and AP1 (JunD and Fosl2) motifs as major drivers of altered gene accessibility. scRNA-seq, gene knockout, and signaling studies suggest that repetitive allergenic stress induces a gene repression program involving Nr4a2, Zeb1, Bach2, and JunD and a preparedness program involving Fhl2, FosB, Stat6, Srebf2, and MPP7 in memory ILC2s. A mutually regulated balance between these two programs establishes and maintains memory. The preparedness program (e.g., Fhl2) can be activated with a subthreshold cognate stimulation, which down-regulates repressors and activates effector pathways to elicit the memory-driven phenotype. © 2021 Verma et al.
- Immunology and Microbiology,
- Neuroscience
Arthritis Flares Mediated by Tissue Resident Memory T Cells in the Joint
Preprint on BioRxiv : the Preprint Server for Biology on 5 June 2021 by Chang, M. H., Levescot, A., et al.
PubMed
Although rheumatoid arthritis is a systemic disease, flares typically occur in a subset of joints that is distinctive for each patient. Pursuing this intriguing pattern, we show that arthritis recurrence is mediated by long-lived synovial resident memory T cells (T RM ). In three murine models, CD8+ cells bearing T RM markers remain in previously inflamed joints during remission. These cells are bona fide T RM , exhibiting failure to migrate from joint to joint, preferential uptake of fatty acids, and long-term residency. Disease flares result from T RM activation by antigen, leading to CCL5-mediated recruitment of circulating effector cells. Correspondingly, T RM depletion ameliorates recurrence in a site-specific manner. Human rheumatoid arthritis joint tissues contain a comparable CD8+-predominant T RM population, most evident in late-stage non-inflamed synovium, exhibiting limited T cell receptor diversity and a pro-inflammatory transcriptomic signature. Together, these findings establish synovial T RM cells as a targetable mediator of disease chronicity in autoimmune arthritis.
- Cancer Research,
- Immunology and Microbiology,
- Neuroscience
Resident memory T cells in tumor-distant tissues fortify against metastasis formation.
In Cell Reports on 11 May 2021 by Christian, L. S., Wang, L., et al.
PubMed
As a critical machinery for rapid pathogen removal, resident memory T cells (TRMs) are locally generated after the initial encounter. However, their development accompanying tumorigenesis remains elusive. Using a murine breast cancer model, we show that TRMs develop in the tumor, the contralateral mammary mucosa, and the pre-metastatic lung. Single-cell RNA sequencing of TRMs reveals two phenotypically distinct populations representing their active versus quiescent phases. These TRMs in different tissue compartments share the same TCR clonotypes and transcriptomes with a subset of intratumoral effector/effector memory T cells (TEff/EMs), indicating their developmental ontogeny. Furthermore, CXCL16 is highly produced by tumor cells and CXCR6- TEff/EMs are the major subset preferentially egressing the tumor to form distant TRMs. Functionally, releasing CXCR6 retention in the primary tumor amplifies tumor-derived TRMs in the lung and leads to superior protection against metastases. This immunologic fortification suggests a potential strategy to prevent metastasis in clinical oncology. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
- Cancer Research,
- Immunology and Microbiology
Combining vanadyl sulfate with Newcastle disease virus potentiates rapid innate immune-mediated regression with curative potential in murine cancer models.
In Molecular Therapy Oncolytics on 26 March 2021 by McAusland, T. M., van Vloten, J. P., et al.
PubMed
The avian paramyxovirus, Newcastle disease virus (NDV), is a promising oncolytic agent that has been shown to be safe and effective in a variety of pre-clinical cancer models and human clinical trials. NDV preferentially replicates in tumor cells due to signaling defects in apoptotic and antiviral pathways acquired during the transformation process and is a potent immunostimulatory agent. However, when used as a monotherapy NDV lacks the ability to consistently generate durable remissions. Here we investigate the use of viral sensitizer-mediated combination therapy to enhance the anti-neoplastic efficacy of NDV. Intratumoral injection of vanadyl sulfate, a pan-inhibitor of protein tyrosine phosphatases, in combination with NDV significantly increased the number and activation status of natural killer (NK) cells in the tumor microenvironment, concomitant with increased expression of interferon-β, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, leading to rapid tumor regression and long-term cures in mice bearing syngeneic B16-F10 melanomas. The anti-tumor efficacy of this combination therapy was abrogated when NK cells were depleted and when interferon-β expression was transiently suppressed. Tumor-specific CD8+ T cell responses were not detected, nor were mice whose tumors regressed protected from re-challenge. This suggested efficacy of the combination therapy predominantly relied on the innate immune system. Importantly, efficacy was not limited to melanoma; it was also demonstrated in a murine prostate cancer model. Taken together, these results suggest that combining NDV with vanadyl sulfate potentiates an innate immune response that can potentiate rapid clearance of tumors, with type I interferon signaling and NK cells being important mechanisms of action. © 2021 The Author(s).