InVivoMAb anti-mouse IL-1 R (CD121a)

CloneCatalog #Category
JAMA-147 BE0256InVivoMAb Antibodies
$150 - $3920 Login for Academic & Non-profit Pricing

About InVivoMAb anti-mouse IL-1 R (CD121a)

The JAMA-147 monoclonal antibody reacts with mouse IL-1 receptor (IL-1 R) type 1 also known as CD121a. IL-1 R is an 80 kDa transmembrane glycoprotein and a member of the immunoglobulin superfamily. The receptor is expressed on T cells, thymocytes, dendritic cells, fibroblasts, vascular endothelial cells, epithelial cells and neural cells. IL-1 R type 1 can bind both IL-1α and IL-1β. Upon ligand binding the type I receptor mediates all the known IL-1 biological responses.

InVivoMAb anti-mouse IL-1 R (CD121a) Specifications

Isotype Armenian Hamster IgG, κ
Immunogen Extracellular domain of mouse IL-1 R type 1
Reported Applications

in vivo IL-1 R blockade

in vitro IL-1 R blockade

Formulation
  • PBS, pH 6.0 0.01% Tween

  • Contains no stabilizers or preservatives
Endotoxin
  • <2EU/mg (<0.002EU/μg)
  • Determined by LAL gel clotting assay
Purity
  • >95%
  • Determined by SDS-PAGE
Sterility 0.2 μM filtered
Production Purified from tissue culture supernatant in an animal free facility
Purification Protein G
RRID AB_2661843
Molecular Weight 150 kDa
Storage The antibody solution should be stored at the stock concentration at 4°C. Do not freeze.

Application References

InVivoMAb anti-mouse IL-1 R (CD121a)

  • in vivo IL-1 R blockade

Singh, S., et al. (2021). "IL-1alpha Mediates Innate and Acquired Resistance to Immunotherapy in Melanoma." J Immunol 206(8): 1966-1975. PubMed

Inflammation has long been associated with cancer initiation and progression; however, how inflammation causes immune suppression in the tumor microenvironment and resistance to immunotherapy is not well understood. In this study, we show that both innate proinflammatory cytokine IL-1alpha and immunotherapy-induced IL-1alpha make melanoma resistant to immunotherapy. In a mouse melanoma model, we found that tumor size was inversely correlated with response to immunotherapy. Large tumors had higher levels of IL-1alpha, Th2 cytokines, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and regulatory T cells but lower levels of IL-12, Th1 cytokines, and activated T cells. We found that therapy with adenovirus-encoded CD40L (rAd.CD40L) increased tumor levels of IL-1alpha and PMN-MDSCs. Blocking the IL-1 signaling pathway significantly decreased rAd.CD40L-induced PMN-MDSCs and their associated PD-L1 expression in the tumor microenvironment and enhanced tumor-specific immunity. Similarly, blocking the IL-1 signaling pathway improved the antimelanoma activity of anti-PD-L1 Ab therapy. Our study suggests that blocking the IL-1alpha signaling pathway may increase the efficacy of immunotherapies against melanoma.

  • in vivo IL-1 R blockade

Allen, B. M., et al. (2020). "Systemic dysfunction and plasticity of the immune macroenvironment in cancer models." Nat Med 26(7): 1125-1134. PubMed

Understanding of the factors governing immune responses in cancer remains incomplete, limiting patient benefit. In this study, we used mass cytometry to define the systemic immune landscape in response to tumor development across five tissues in eight mouse tumor models. Systemic immunity was dramatically altered across models and time, with consistent findings in the peripheral blood of patients with breast cancer. Changes in peripheral tissues differed from those in the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened responses to orthogonal challenges, including reduced T cell activation during viral or bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, whereas promoting APC activation rescued T cell activity. Systemic immune changes were reversed with surgical tumor resection, and many were prevented by interleukin-1 or granulocyte colony-stimulating factor blockade, revealing remarkable plasticity in the systemic immune state. These results demonstrate that tumor development dynamically reshapes the composition and function of the immune macroenvironment.

  • in vivo IL-1 R blockade

Choi, G. E., et al. (2018). "Autophagy deficiency in myeloid cells exacerbates eosinophilic inflammation in chronic rhinosinusitis." J Allergy Clin Immunol 141(3): 938-950 e912. PubMed

BACKGROUND: Eosinophilic inflammation is a major pathologic feature of chronic rhinosinusitis (CRS) and is frequently associated with severe refractory disease. Prostaglandin (PG) D2 levels are increased in patients with CRS, and PGD2 is an important contributing factor to eosinophilic inflammation. Autophagy has a pleiotropic effect on immune responses and disease pathogenesis. Recent studies suggest the potential involvement of autophagy in patients with CRS and the PG pathway. OBJECTIVE: We sought to investigate whether altered function of autophagy is associated with eosinophilic inflammation and dysregulated production of PGD2 in patients with CRS. METHODS: We used myeloid cell-specific deletion of autophagy-related gene 7 (Atg7), which is vital for autophagy, and investigated the effects of impaired autophagy on eosinophilic inflammation in a murine model of eosinophilic chronic rhinosinusitis (ECRS). The effect of autophagy on PGD2 production and gene expression profiles associated with allergy and the PG pathway were assessed. RESULTS: We found that impaired autophagy in myeloid cells aggravated eosinophilia, epithelial hyperplasia, and mucosal thickening in mice with ECRS. This aggravation was associated with gene expression profiles that favor eosinophilic inflammation, TH2 response, mast cell infiltration, and PGD2 dysregulation. Supporting this, PGD2 production was also increased significantly by impaired autophagy. Among other myeloid cells, macrophages were associated with autophagy deficiency, leading to increased IL-1beta levels. Macrophage depletion or blockade of IL-1 receptor led to alleviation of eosinophilic inflammation and sinonasal anatomic abnormalities associated with autophagy deficiency. CONCLUSION: Our results suggest that impaired autophagy in myeloid cells, particularly macrophages, has a causal role in eosinophilic inflammation and ECRS pathogenesis.

  • in vivo IL-1 R blockade

Naik, S., et al. (2017). "Inflammatory memory sensitizes skin epithelial stem cells to tissue damage." Nature 550(7677): 475-480. PubMed

The skin barrier is the body’s first line of defence against environmental assaults, and is maintained by epithelial stem cells (EpSCs). Despite the vulnerability of EpSCs to inflammatory pressures, neither the primary response to inflammation nor its enduring consequences are well understood. Here we report a prolonged memory to acute inflammation that enables mouse EpSCs to hasten barrier restoration after subsequent tissue damage. This functional adaptation does not require skin-resident macrophages or T cells. Instead, EpSCs maintain chromosomal accessibility at key stress response genes that are activated by the primary stimulus. Upon a secondary challenge, genes governed by these domains are transcribed rapidly. Fuelling this memory is Aim2, which encodes an activator of the inflammasome. The absence of AIM2 or its downstream effectors, caspase-1 and interleukin-1beta, erases the ability of EpSCs to recollect inflammation. Although EpSCs benefit from inflammatory tuning by heightening their responsiveness to subsequent stressors, this enhanced sensitivity probably increases their susceptibility to autoimmune and hyperproliferative disorders, including cancer.

  • in vitro IL-1 R blockade

Ha, H. L., et al. (2014). "IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms." Proc Natl Acad Sci U S A 111(33): E3422-3431. PubMed

Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation and by an influx of inflammatory cells. The mechanisms underlying psoriasis in humans and in mouse models are poorly understood, although evidence strongly points to crucial contributions of IL-17 cytokines, which signal via the obligatory adaptor CIKS/Act1. Here we identify critical roles of CIKS/Act1-mediated signaling in imiquimod-induced psoriatic inflammation, a mouse model that shares features with the human disease. We found that IL-17 cytokines/CIKS-mediated signaling into keratinocytes is essential for neutrophilic microabscess formation and contributes to hyperproliferation and markedly attenuated differentiation of keratinocytes, at least in part via direct effects. In contrast, IL-17 cytokines/CIKS-mediated signaling into nonkeratinocytes, particularly into dermal fibroblasts, promotes cellular infiltration and, importantly, leads to enhanced the accumulation of IL-17-producing gammadeltaT cells in skin, comprising a positive feed-forward mechanism. Thus, CIKS-mediated signaling is central in the development of both dermal and epidermal hallmarks of psoriasis, inducing distinct pathologies via target cell-specific effects. CIKS-mediated signaling represents a potential therapeutic target in psoriasis.